Is Shortwave On Life Support?

A QSL Card from Radio Moscow probably got many 14-year-olds on government watch lists. (Public domain)

Between World War II and Y2K, shortwave listening was quite an education. With a simple receiver, you could listen to the world. Some of it, of course, was entertainment, and much of it was propaganda of one sort or another. But you could learn a lot. Kids with shortwave radios always did great in geography. Getting the news from a different perspective is often illuminating, too. Learning about other cultures and people in such a direct way is priceless. Getting a QSL card in the mail from a faraway land seemed very exciting back then.

Today, the shortwave landscape is a mere shadow of itself. According to a Wikipedia page, there are 235 active shortwave broadcasters from a list of 414, so nearly half are defunct. Not only are there many “dead” shortwave outlets, but many of the ones that are left are either not aimed at the world market or serve a niche group of listeners.

You can argue that with the Internet, you don’t need radio, and that’s probably correct in some ways but misses a few important points. Indeed, many broadcasters still exist as streaming stations or a mix of radio and streaming. I have to admit I listen to the BBC often but rarely on the air. My computer or phone plays it in crystal clarity 24 hours a day.

A future Hackaday author in front of an Eico shortwave radio

So, while a 14-year-old in 1975 might be hunched over a radio wearing headphones, straining to hear NHK World Radio, these days, they are likely surfing the popular social media site of the week. You could easily argue that content on YouTube, Instagram, and the like can come from all over the world, so what’s the problem?

The problem is information overload. Faced with a shortwave radio, there were a limited number of options available. What’s more, only a small part of the band might be “open” at any given time. It isn’t like the radio could play games or — unless you were a ham — allow you to chat with your friends. So you found radio stations from Germany to South Africa. From China and Russia, to Canada and Mexico. You knew the capital of Albania. You learned a little Dutch from Radio Nederlands.

 

Is there an answer? Probably not. Radio isn’t coming back, barring an apocalyptic event. Sure, you can listen to the BBC on your computer, but you probably won’t. You can even listen to a radio over the network, but that isn’t going to draw in people who aren’t already interested in radio, even if it really looks like a radio.

If you made a website with radio stations of the world, would people use it? Something like a software version of this globe or a “world service” version of RadioGarden. Probably not.

Do you listen to shortwave radio? If so, what are you listening to? Do you listen to “world services” at all? Tell us in the comments. Many careers were launched by finding a shortwave radio under the Christmas tree at just the right age. When Internet access is compromised, there’s still no substitute for real radios. If you want to listen to some of those vintage programs, they are — unsurprisingly — on the Internet.

Tiny Transceiver Gets It Done With One Transistor

When we first spotted the article about a one-transistor amateur radio transceiver, we were sure it was a misprint. We’ve seen a lot of simple low-power receivers using a single transistor, and a fair number of one-transistor transmitters. But both in one package with only a single active component? Curiosity piqued.

It turns out that [Ciprian Popica (YO6DXE)]’s design is exactly what it says on the label, and it’s pretty cool to boot. The design is an improvement on a one-transistor transceiver called “El Pititico” and is very petite indeed. The BOM has only about fifteen parts including a 2N2222 used as a crystal-controlled oscillator for both the transmitter and the direct-conversion receiver, along with a handful of passives and a coupe of hand-wound toroidal inductors. There’s no on-board audio section, so you’ll have to provide an external amplifier to hear the signals; some might say this is cheating a bit from the “one transistor” thing, but we’ll allow it. Oh, and there’s a catch — you have to learn Morse code, since this is a CW-only transmitter.

As for construction, [Ciprian] provides a nice PCB  layout, but the video below seems to show a more traditional “ugly style” build, which we always appreciate. The board lives in a wooden box small enough to get lost in a pocket. The transceiver draws about 1.5 mA while receiving and puts out a fairly powerful 500 mW signal, which is fairly high in the QRP world. [Ciprian] reports having milked a full watt out of it with some modifications, but that kind of pushes the transistor into Magic Smoke territory. The signal is a bit chirpy, too, but not too bad.

We love minimalist builds like these; they always have us sizing up our junk bin and wishing we were better stocked on crystals and toroids. It might be good to actually buckle down and learn Morse too.

 

RX-4 voor PI3ZLB klaar voor gebruik

Sinds enige tijd draaien er 3 extra ontvangers mee in het netwerk van de repeater om zo het ontvangstbereik te maximaliseren. In Hulsberg bevindt zich niet alleen de repeater zelf maar enkele honderden meters verderop ook de 4e ontvanger. Deze is gedoneerd door Thijs, PE1RLN die de ontvanger zelf samenstelde en samen met Folkert heeft getest en afgeregeld.

De ontvanger bestaat uit een Raspberry Pi en een RTL-SDR stick, meer niet. De gevoeligheid was in het begin zelfs wat te groot maar na wat afregelen en 3dB demping werkt het als een zonnetje. Die 3dB demping komt door een passieve splitter die de antenne laat delen met de APRS iGate die over dezelfde hardware beschikt die alle ontvangen APRS stations deelt met de APRS.fi server. En toen Thijs toch bezig was, installeerde hij nog een D-Star hotspot in dezelfde behuizing die middels een diplexer op 70cm dezelfde antenne nogmaals gebruikt. Door toepassing van een kleine powemodule wordt het uitgangsvermogen 200mW wat voor heel Hulsberg zorgt voor zorgeloos gebruik tijdens wandelingen.

Het geheel is netjes ingebouwd in een 19″ rackbehuizing zodat het niet alleen netjes oogt maar ook stevig en betrouwbaar is ingebouwd.

VHF/UHF Antennas, The Bad, The Ugly, And The Even Worse

When you buy a cheap ham radio handy-talkie, you usually get a little “rubber ducky” antenna with it. You can also buy many replacement ones that are at least longer. But how good are they? [Learnelectronics] wanted to know, too, so he broke out his NanoVNA and found out that they were all bad, although some were worse than others. You can see the results in the — sometimes fuzzy — video below.

Of course, bad is in the eye of the beholder and you probably suspected that most of them weren’t super great, but they do seem especially bad. So much so, that, at first, he suspected he was doing something wrong. The SWR was high all across the bands the antennas targeted.

 

It won’t come as a surprise to find that making an antenna work at 2 meters and 70 centimeters probably isn’t that easy. In addition, it is hard to imagine the little stubby antenna the size of your thumb could work well no matter what. Still, you’d think at least the longer antennas would be a little better.

Hams have had SWR meters for years, of course. But it sure is handy to be able to connect an antenna and see its performance over a wide band of frequencies. Some of the antennas weren’t bad on the UHF band. That makes sense because the antenna is physically larger but at VHF the size didn’t seem a big difference.

He even showed up a little real-world testing and, as you might predict, the test results did not lie. However, only the smallest antenna was totally unable to hit the local repeater.

Of course, you can always make your own antenna. It doesn’t have to take much.

 

Cavity Filters, The Black Art You Have A Chance Of Pursuing

A tuned circuit formed by a capacitor and an inductor is a familiar enough circuit, and it’s understood that it will resonate at a particular frequency. As that frequency increases, so the size of the capacitor and inductor decrease, and there comes a point at which they can become the characteristic capacitance and inductance of a transmission line. These tuned circuits can be placed in an enclosure, at which they can be designed for an extremely high Q factor, a measure of quality, and thus a very narrow resonant point. They are frequently used as filters for that reason, and [Fesz] is here with a video explaining some of their operation and configurations.

Some of the mathematics behind RF design can be enough to faze any engineer, but he manages to steer a path away from that rabbit hole and explain cavity filters in a way that’s very accessible. We learn how to look at tuned circuits as transmission lines, and the properties of the various different coupling methods. Above all it reveals that making tuned cavities is within reach.

They’re a little rare these days, but there was a time when almost every TV set contained a set of these cavities which were ready-made for experimentation.

 

 

Hacking A Quansheng Handheld To Transmit Digital Modes

Have you ever thought about getting into digital modes on the ham bands? As it turns out, you can get involved using the affordable and popular Quansheng UV-K6 — if you’re game to modify it, that is. It’s perfectly achievable using the custom Mobilinkd firmware, the brainchild of one [Rob Riggs].

In order to efficiently transmit digital modes, it’s necessary to make some hardware changes as well. Low frequencies must be allowed to pass in through the MIC input, and to pass out through the audio output. These are normally filtered out for efficient transmission of speech, but these filters mess up digital transmissions something fierce.  This is achieved by messing about with some capacitors and bodge wires. Then, one can flash the firmware using a programming cable.

With the mods achieved, the UV-K6 can be used for transmitting in various digital modes, like M17 4-FSK. The firmware has several benefits, not least of which is cutting turnaround time. This is the time the radio takes to switch between transmitting and receiving, and slashing it is a big boost for achieving efficient digital communication. While the stock firmware has an excruciating slow turnaround of 378 ms, the Mobilinkd firmware takes just 79 ms.

Further gains may be possible in future, too. Bypassing the audio amplifier could be particularly fruitful, as it’s largely in the way of the digital signal stream.

Quansheng’s radios are popular targets for modification, and are well documented at this point.

Bijeenkomst voortaan op WOENSDAG

Vanaf 26 juni vinden de bijeenkomsten plaats op WOENSDAG vanaf 20:00 uur in Het Volkshuis te Heerlen. Tot die tijd zullen er op maandagavond geen bijeenkomsten plaatsvinden.

Onlangs is Het Volkshuis gewisseld van eigenaar. We zijn bijna twee jaar lang gastvrij ontvangen door Corina en Michael maar helaas hebben zij door omstandigheden hun horeca moeten overdragen. De nieuwe eigenaar, Boeike genaamd, is bijna elke dag geopend maar jammer genoeg niet op de maandag waardoor wij wederom moeten schuiven. In onderling overleg en op basis van de enquête die we een tijd geleden uitstuurden, zullen de bijeenkomsten daarom op woensdagavond plaatsvinden.

Tot woensdag!

Ham Busts The Myth Of Ground

Everyone who deals with electronics knows that grounding is important. Your house has a copper rod in the ground. But [Kristen K6WX] has news: the idea of ground is kind of a myth. She explained at a talk at the recent ARRL National Convention, and if you didn’t make it, you can watch it in the video below.

The problem is analogous to finding something that is standing still. You really can only talk about something standing still relative to something else. Sure, you might be standing still outside a building, but seen from the moon, you and the building are spinning around at about one revolution per day. If you were sitting on the sun and not burning up, you’d see lots of motion of everything, and, of course, the sun itself is moving in the right frame of reference.

 

So what’s ground? Just a common reference between two things. [Kristen] gets into RF grounds, DC grounds, and phasors. If you’ve ever wanted to ground your antenna or deal with RF interference, you’ll find a lot of information in this 45-minute video.

The name ground is, perhaps, unfortunate. You do want earth grounding for lightning protection, but what most of us think of as ground is just a convention. Need a -9V battery? Just reverse your meter leads, and there you go.

Getting a good common reference can be maddening. We’ve looked at way too many ground loops before.

 

Passive Diplexer Makes One Antenna Act Like Two

Stay in the amateur radio hobby long enough and you might end up with quite a collection of antennas. With privileges that almost extend from DC to daylight, one antenna will rarely do everything, and pretty soon your roof starts to get hard to see through the forest of antennas. It may be hell on curb appeal, but what’s a ham to do?

One answer could be making one antenna do the work of two, as [Guido] did with this diplexer for dual APRS setups. Automatic Packet Reporting System is a packet radio system used by hams to transmit telemetry and other low-bandwidth digital data. It’s most closely associated with the 2-meter ham band, but [Guido] has both 2-meter (144.8-MHz) and 70-cm LoRa (433.775-MHz) APRS IGates, or Internet gateway receivers. His goal was to use a single broadband discone antenna for both APRS receivers, and this would require sorting the proper signals from the antenna to the proper receiver with a diplexer.

Note that [Guido] refers to his design as a “duplexer,” which is a device to isolate and protect a receiver from a transmitter when they share the same antenna — very similar to a diplexer but different. His diplexer is basically a pair of filters in parallel — a high-pass filter tuned to just below the 70-cm band, and a low-pass filter tuned just above the top of the 2-m band. The filters were designed using a handy online tool and simulated in LTSpice, and then constructed in classic “ugly” style. The diplexer is all-passive and uses air-core inductors, all hand-wound and tweaked by adjusting the spacing of the turns.

[Guido]’s diplexer performs quite well — only a fraction of a dB of insertion loss, but 45 to 50 dB attenuation of unwanted frequencies — pretty impressive for a box full of caps and coils. We love these quick and dirty tactical builds, and it’s always a treat to see RF wizardry in action.

A Tiny Tuner For The Low Power Ham

Something that all radio amateurs encounter sooner or later is the subject of impedance matching. If you’d like to make sure all that power is transferred from your transmitter into the antenna and not reflected back into your power amplifier, there’s a need for the impedance of the one to match that of the other. Most antennas aren’t quite the desired 50 ohms impedance, so part of the standard equipment becomes an antenna tuner — an impedance matching network. For high-power hams these are big boxes full of chunky variable capacitors and big air cored inductors, but that doesn’t exclude the low-power ham from the impedance matching party. [Barbaros Aşuroğlu WB2CBA] has designed the perfect device for them: the credit card ATU.

The circuit of an antenna tuner is simple enough, two capacitors and an inductor in a so-called Pi-network because of its superficial resemblance to the Greek letter Pi. The idea is to vary the capacitances and inductance to find the best match, and on this tiny model it’s done through a set of miniature rotary switches. There are a set of slide switches to vary the configuration or switch in a load, and there’s even a simple matching indicator circuit.

We like this project, in that it elegantly provides an extremely useful piece of equipment, all integrated into a tiny footprint. It’s certainly not the first ATU we’ve brought you.

Thanks [ftg] for the tip!