RX-4 voor PI3ZLB klaar voor gebruik

Sinds enige tijd draaien er 3 extra ontvangers mee in het netwerk van de repeater om zo het ontvangstbereik te maximaliseren. In Hulsberg bevindt zich niet alleen de repeater zelf maar enkele honderden meters verderop ook de 4e ontvanger. Deze is gedoneerd door Thijs, PE1RLN die de ontvanger zelf samenstelde en samen met Folkert heeft getest en afgeregeld.

De ontvanger bestaat uit een Raspberry Pi en een RTL-SDR stick, meer niet. De gevoeligheid was in het begin zelfs wat te groot maar na wat afregelen en 3dB demping werkt het als een zonnetje. Die 3dB demping komt door een passieve splitter die de antenne laat delen met de APRS iGate die over dezelfde hardware beschikt die alle ontvangen APRS stations deelt met de APRS.fi server. En toen Thijs toch bezig was, installeerde hij nog een D-Star hotspot in dezelfde behuizing die middels een diplexer op 70cm dezelfde antenne nogmaals gebruikt. Door toepassing van een kleine powemodule wordt het uitgangsvermogen 200mW wat voor heel Hulsberg zorgt voor zorgeloos gebruik tijdens wandelingen.

Het geheel is netjes ingebouwd in een 19″ rackbehuizing zodat het niet alleen netjes oogt maar ook stevig en betrouwbaar is ingebouwd.

VHF/UHF Antennas, The Bad, The Ugly, And The Even Worse

When you buy a cheap ham radio handy-talkie, you usually get a little “rubber ducky” antenna with it. You can also buy many replacement ones that are at least longer. But how good are they? [Learnelectronics] wanted to know, too, so he broke out his NanoVNA and found out that they were all bad, although some were worse than others. You can see the results in the — sometimes fuzzy — video below.

Of course, bad is in the eye of the beholder and you probably suspected that most of them weren’t super great, but they do seem especially bad. So much so, that, at first, he suspected he was doing something wrong. The SWR was high all across the bands the antennas targeted.


It won’t come as a surprise to find that making an antenna work at 2 meters and 70 centimeters probably isn’t that easy. In addition, it is hard to imagine the little stubby antenna the size of your thumb could work well no matter what. Still, you’d think at least the longer antennas would be a little better.

Hams have had SWR meters for years, of course. But it sure is handy to be able to connect an antenna and see its performance over a wide band of frequencies. Some of the antennas weren’t bad on the UHF band. That makes sense because the antenna is physically larger but at VHF the size didn’t seem a big difference.

He even showed up a little real-world testing and, as you might predict, the test results did not lie. However, only the smallest antenna was totally unable to hit the local repeater.

Of course, you can always make your own antenna. It doesn’t have to take much.


Cavity Filters, The Black Art You Have A Chance Of Pursuing

A tuned circuit formed by a capacitor and an inductor is a familiar enough circuit, and it’s understood that it will resonate at a particular frequency. As that frequency increases, so the size of the capacitor and inductor decrease, and there comes a point at which they can become the characteristic capacitance and inductance of a transmission line. These tuned circuits can be placed in an enclosure, at which they can be designed for an extremely high Q factor, a measure of quality, and thus a very narrow resonant point. They are frequently used as filters for that reason, and [Fesz] is here with a video explaining some of their operation and configurations.

Some of the mathematics behind RF design can be enough to faze any engineer, but he manages to steer a path away from that rabbit hole and explain cavity filters in a way that’s very accessible. We learn how to look at tuned circuits as transmission lines, and the properties of the various different coupling methods. Above all it reveals that making tuned cavities is within reach.

They’re a little rare these days, but there was a time when almost every TV set contained a set of these cavities which were ready-made for experimentation.



Hacking A Quansheng Handheld To Transmit Digital Modes

Have you ever thought about getting into digital modes on the ham bands? As it turns out, you can get involved using the affordable and popular Quansheng UV-K6 — if you’re game to modify it, that is. It’s perfectly achievable using the custom Mobilinkd firmware, the brainchild of one [Rob Riggs].

In order to efficiently transmit digital modes, it’s necessary to make some hardware changes as well. Low frequencies must be allowed to pass in through the MIC input, and to pass out through the audio output. These are normally filtered out for efficient transmission of speech, but these filters mess up digital transmissions something fierce.  This is achieved by messing about with some capacitors and bodge wires. Then, one can flash the firmware using a programming cable.

With the mods achieved, the UV-K6 can be used for transmitting in various digital modes, like M17 4-FSK. The firmware has several benefits, not least of which is cutting turnaround time. This is the time the radio takes to switch between transmitting and receiving, and slashing it is a big boost for achieving efficient digital communication. While the stock firmware has an excruciating slow turnaround of 378 ms, the Mobilinkd firmware takes just 79 ms.

Further gains may be possible in future, too. Bypassing the audio amplifier could be particularly fruitful, as it’s largely in the way of the digital signal stream.

Quansheng’s radios are popular targets for modification, and are well documented at this point.