Bruteforcing Accidental Antenna Designs

Antenna design is often referred to as a black art or witchcraft, even by those experienced in the space. To that end, [Janne] wondered—could years of honed skill be replaced by bruteforcing the problem with the aid of some GPUs? Iterative experiments ensued.

[Janne]’s experience in antenna design was virtually non-existent prior to starting, having a VNA on hand but no other knowledge of the craft. Formerly, this was worked around by simply copying vendor reference designs when putting antennas on PCBs. However, knowing that sometimes a need for something specific arises, they wanted a tool that could help in these regards.

The root of the project came from a research paper using an FDTD tool running on GPUs to inversely design photonic nanostructures. Since light is just another form of radio frequency energy, [Janne] realized this could be tweaked into service as an RF antenna design tool. The core simulation engine of the FDTD tool, along with its gradient solver, were hammered into working as an antenna simulator, with [Janne] using LLMs to also tack on a validation system using openEMS, an open-source electromagnetic field solver. The aim was to ensure the results had some validity to real-world physics, particularly important given [Janne] left most of the coding up to large language models. A reward function development system was then implemented to create antenna designs, rank them on fitness, and then iterate further.

The designs produced by this arcane system are… a little odd, and perhaps not what a human might have created. They also didn’t particularly impress in the performance stakes when [Janne] produced a few on real PCBs. However, they do more-or-less line up with their predicted modelled performance, which was promising. Code is on Github if you want to dive into experimenting yourself. Experienced hands may like to explore the nitty gritty details to see if the LLMs got the basics right.

We’ve featured similar “evolutionary” techniques before, including one project that aimed to develop a radio. If you’ve found ways to creatively generate functional hardware from boatloads of mathematics, be sure to let us know on the tipsline!

A Basic Guide To Shielding

[GreatScott] has recently been tinkering in the world of radio frequency emissions, going so far as to put their own designs in a proper test chamber to determine whether they meet contemporary standards for noise output. This led them to explore the concept of shielding, and how a bit of well-placed metal can make all the difference in this regard.

The video focuses on three common types of shielding—absorber sheets, shielding tapes, and shielding cabinets. A wide variety of electronic devices use one or more of these types of shielding. [GreatScott] shows off their basic effectiveness by putting various types of shielding in between a noise source and a near-field probe hooked up to a receiver. Just placing a bit of conductive material in between the two can cut down on noise significantly. Then, a software defined radio (SDR) was busted out for some more serious analysis. [GreatScott] shows how Faraday cages (or simple shielding cabinets] can be used to crush down spurious RF outputs to almost nothing, and how his noisy buck-boost designs can be quieted down with the use of the right absorber sheets that deal well with the problematic frequencies in question. The ultimate upshot of the tests is that higher frequencies respond best to conductive shielding that is well enclosed, while lower frequency noise benefits from more absorptive shielding materials with the right permeability for the job.

Shielding design can be a complex topic that you probably won’t master in a ten minute YouTube video, but this content is a great primer if you’re new to the topic. We’ve covered the topic before, too, particularly on how a bit of DIY shielding can really aid a cheap SDR’s performance. Video after the break.

 

Restoring The Soul Of A 1940s Radio

Although we do often see projects that take antiques and replace some or all of their components with modern equipment, we can also sympathize with the view that (when possible and practical) certain antique electronics should be restored rather than gutted. [David] has this inclination for his 1948 GE radio, but there are a few issues with it that prevented a complete, period-correct restoration.

The main (pun intended) issue at the start of this project was safety. The original radio had a chassis that was just as likely as not to become energized, with the only protection being the plastic housing. [David] set up an isolation transformer with a modern polarized power cable to help solve this issue, and then got to work replacing ancient capacitors. With a few other minor issues squared away this is all it took to get the radio working to receive AM radio, and he also was able to make a small modification to allow the radio to accept audio via a 3.5mm jack as well.

However, [David] also has the view that a period-correct AM transmission should accompany this radio as well and set about with the second bit of this project. It’s an adaptation of a project called FieldStation42 originally meant to replicate the experience of cable TV, but [Shane], the project’s creator, helped [David] get it set up for audio as well. A notable feature of this system is that when the user tunes away from one station, it isn’t simply paused, but instead allowed to continue playing as if real time is passing in the simulated radio world.

Although there are a few modern conveniences here for safety and for period-correct immersion, we think this project really hits the nail on the head for preserving everything possible while not rolling the dice with 40s-era safety standards. There’s also a GitHub page with some more info that [David] hopes to add to in the near future. This restoration of a radio only one year newer has a similar feel, and there are also guides for a more broad category of radio restorations as well.

 

Nieuw afdelingsbestuur

Tijdens de ALV van dinsdag 20 januari hebben de aanwezige leden unaniem ingestemd met de installatie van een deels nieuw bestuur:

Voorzitter: Thijs Has PE1RLN
Penningmeester: Mark Vroomen PC9DB
Secretaris: Thijs Has PE1RLN a.i.

Het nieuwe bestuur benadrukt dat ze het komende jaar zelf NIETS zullen doen aan huisvesting, bijeenkomsten en activiteiten, dat komt volledig voor rekening van de leden. Het bestuur zal alle initiatieven faciliteren, waar nodig begeleiden en financieren en indien noodzakelijk geacht een bijzondere ledenvergadering bijeenroepen (bijvoorbeeld bij het bepalen van een nieuwe locatie).

Het bestuur is bereikbaar via de mailadressen en natuurlijk op de clubavonden.

Ledenvergadering 20 Januari 2026 20.00 uur

LET OP HET IS NIET IN SPAUBEEK MAAR IN HET WEVERKE TE SCHIMMERT

Hierbij nodig ik namens het bestuur alle leden van de afdeling uit voor het bijwonen van de Algemene Ledenvergadering (ALV) die zal worden gehouden op dinsdag 20 januari 2026 om 20:00 uur in Het Weverke, Hoofdstraat 77, 6333 BG, Schimmert.

Aftredend bestuur en eventuele opheffing van de afdeling

Vorig jaar januari is de afdeling “gered”. Er waren geen kandidaten voor een bestuursfunctie, maar tijdens de vergadering bleken uiteindelijk drie leden bereid om een bestuur te vormen. Voor alle drie gold – samengevat – dat zij hun taak als voorwaardelijk zagen en wilden zien hoe het zou gaan verlopen.

Het bestuur heeft het afgelopen jaar geëvalueerd en is tot de conclusie gekomen dat het gebrek aan belangstelling voor activiteiten niet is veranderd, nog daargelaten de bereidheid van leden om activiteiten te organiseren of daarbij mee te helpen. De wekelijkse bijeenkomsten worden weliswaar bezocht, maar in de praktijk komt het erop neer dat het niet uitmaakt of er een bestuur is of niet.

Daarom hebben Guido, PA4GR, Mark, PC9DB en Henk, PA2S besloten af te treden en zich niet herkiesbaar te stellen.

Wanneer zich geen opvolgers melden, zal het huidige bestuur besluiten om de afdeling op te heffen. Als er geen voortzetting mogelijk is, zal in een aparte vergadering eind februari of begin maart het definitieve besluit daartoe moeten worden genomen. Daarbij zal onder andere ook beslist worden over de bestemming van het batig saldo.

Een en ander leidt tot de volgende agenda:

1. Opening door de voorzitter met terugblik 2025

2. Verslag van de penningmeester

3. Verslag van de kascontrolecommissie

4. Aftreden en eventueel verkiezen nieuw bestuur

5. Afhankelijk van punt 4 besluit over vervolgstappen.

Deelnemers moeten een geldig lidmaatschap hebben en de presentielijst tekenen.

Wij streven ernaar om uiterlijk het komende weekeinde vergaderstukken toe te zenden.

Wij rekenen op uw komst!

The Cutting Truth About Variable Capacitors

If you’ve seen a big air-variable capacitor, you may have noticed that some of the plates may have slots cut into them. Why? [Mr Carlson] has the answer in the video below. The short answer: you can bend the tabs formed by the slots to increase or decrease the capacitance by tiny amounts for the purpose of tuning.

For example, if you have a radio receiver with a dial, you can adjust the capacitor to make certain spots on the dial have an exact frequency. Obviously, you can only adjust in bands depending on how many slots are in the capacitor. Sometimes the adjustments aren’t setting the oscillator’s frequency. For example, the Delco radio he shows uses the capacitor to peak the tuning at the specified frequency.

You usually only find the slots on the end plates and, as you can see in the video, not all capacitors have the slots. Of course, bending the plates with or without slots will make things change. Just don’t bend enough to short to an adjacent plate or the fixed plates when the capacitor meshes.

Of course, not all variable capacitors have this same design. We’ve seen a lot of strange set ups.

 

Afdelingsbijeenkomsten in de feestmaand

Via deze weg willen wij graag onder de aandacht brengen dat op dinsdag 9 december de laatste afdelingsbijeenkomst van 2025 gehouden zal worden.

Vanaf dinsdag 6 januari 2026 zullen de afdelingsbijeenkomsten weer hervatten, zoals gebruikelijk vanaf 20:00 bij Eetcafé Spech in Spaubeek.

An Introduction To Analog Filtering

One of the major difficulties in studying electricity, especially when compared to many other physical phenomena, is that it cannot be observed directly by human senses. We can manipulate it to perform various tasks and see its effects indirectly, like the ionized channels formed during lightning strikes or the resistive heating of objects, but its underlying behavior is largely hidden from view. Even mathematical descriptions can quickly become complex and counter-intuitive, obscured behind layers of math and theory. Still, [lcamtuf] has made some strides in demystifying aspects of electricity in this introduction to analog filters.

The discussion on analog filters looks at a few straightforward examples first. Starting with an resistor-capacitor (RC) filter, [lcamtuf] explains it by breaking its behavior down into steps of how the circuit behaves over time. Starting with a DC source and no load, and then removing the resistor to show just the behavior of a capacitor, shows the basics of this circuit from various perspectives. From there it moves into how it behaves when exposed to a sine wave instead of a DC source, which is key to understanding its behavior in arbitrary analog environments such as those involved in audio applications.

There’s some math underlying all of these explanations, of course, but it’s not overwhelming like a third-year electrical engineering course might be. For anyone looking to get into signal processing or even just building a really nice set of speakers for their home theater, this is an excellent primer. We’ve seen some other demonstrations of filtering data as well, like this one which demonstrates basic filtering using a microcontroller.