Simple Antenna Makes For Better ESP32-C3 WiFi

We’ve seen tons of projects lately using the ESP32-C3, and for good reason. The microcontroller has a lot to offer, and the current crop of tiny dev boards sporting it make adding a lot of compute power to even the smallest projects dead easy. Not so nice, though, is the poor WiFi performance of some of these boards, which [Peter Neufeld] addresses with this quick and easy antenna.

There are currently a lot of variations of the ESP32-C3 out there, sometimes available for a buck a piece from the usual suspects. Designs vary, but a lot of them seem to sport a CA-C03 ceramic chip antenna at one end of the board to save space. Unfortunately, the lack of free space around the antenna makes for poor RF performance. [Peter]’s solution is a simple antenna made from a 31-mm length of silver wire. One end of the wire is formed into a loop by wrapping it around a 5-mm drill bit and bending it perpendicular to the remaining tail. The loop is then opened up a bit so it can bridge the length of the ceramic chip antenna and then soldered across it. That’s all it takes to vastly improve performance as measured by [Peter]’s custom RSSI logger — anywhere from 6 to 10 dBm better. You don’t even need to remove the OEM antenna.

The video below, by [Circuit Helper], picks up on [Peter]’s work and puts several antenna variants to further testing. He gets similarly dramatic results, with 20 dBm improvement in some cases. He does note that the size of the antenna can be a detriment to a project that needs a really compact MCU and tries coiling up the antenna, with limited success. He also did a little testing to come up with an optimal length of 34 mm for the main element of the antenna.

There seems to be a lot of room for experimentation here. We wonder how mounting the antenna with the loop perpendicular to the board and the main element sticking out lengthwise would work. We’d love to hear about your experiments, so make sure to ping us with your findings.

 

Pluto’s Not A Planet, But It Is A Spectrum Analyzer

The RTL-SDR dongles get most of the love from people interested in software-defined radio, but the Pluto is also a great option, too. [FromConceptToCircuit] shares code to turn one of these radios into a spectrum analyzer that sweeps up to 6 GHz and down to 100 MHz. You can see a video of how it works below.

While it may seem that 100 MHz is a bit limiting, there’s plenty of activity in that range, including WiFi, Bluetooth, radio systems, both commercial and amateur, and even cell phones.

 

The system uses a lock-in amplifier technique for best performance. The Python code is straightforward. You simply scan all frequencies and determine the signal strength at each point. Of course, the devil is in the details.

We covered using Pluto with GNU Radio a while back. We like how it connects like a network adapter, among other things. Spectrum analysis is a common project for one of these SDRs.

AMSAT-OSCAR 7: The Ham Satellite That Refused To Die

When the AMSAT-OSCAR 7 (AO-7) amateur radio satellite was launched in 1974, its expected lifespan was about five years. The plucky little satellite made it to 1981 when a battery failure caused it to be written off as dead. Then, in 2002 it came back to life. The prevailing theory being that one of the cells in the satellites NiCd battery pack, in an extremely rare event, shorted open — thus allowing the satellite to run (intermittently) off its solar panels.

In a recent video by [Ben] on the AE4JC Amateur Radio YouTube channel goes over the construction of AO-7, its operation, death and subsequent revival are covered, as well as a recent QSO (direct contact).

The battery is made up of multiple individual cells.

The solar panels covering this satellite provided a grand total of 14 watts at maximum illumination, which later dropped to 10 watts, making for a pretty small power budget. The entire satellite was assembled in a ‘clean room’ consisting of a sectioned off part of a basement, with components produced by enthusiasts associated with AMSAT around the world. Onboard are two radio transponders: Mode A at 2 meters and Mode B at 10 meters, as well as four beacons, three of which are active due to an international treaty affecting the 13 cm beacon.

Positioned in a geocentric LEO (1,447 – 1,465 km) orbit, it’s quite amazing that after 50 years it’s still mostly operational. Most of this is due to how the satellite smartly uses the Earth’s magnetic field for alignment with magnets as well as the impact of photons to maintain its spin. This passive control combined with the relatively high altitude should allow AO-7 to function pretty much indefinitely while the PV panels keep producing enough power. All because a NiCd battery failed in a very unusual way.

 

Pictures From A High Altitude Balloon

How do you get images downlinked from 30 km up? Hams might guess SSTV — slow scan TV — and that’s the approach [desafloinventor] took. If you haven’t seen it before (no pun intended), SSTV is a way to send images over radio at a low frame rate. Usually, you get about 30 seconds to 2 minutes per frame.

The setup uses regular, cheap walkie-talkies for the radio portion on a band that doesn’t require a license. The ESP32-CAM provides the processing and image acquisition. Normally, you don’t think of these radios as having a lot of range, but if the transmitter is high, the range will be very good. The project steals the board out of the radio to save weight. You only fly the PC board, not the entire radio.

If you are familiar with SSTV, the ESP-32 code encodes the image using Martin 1. This color format was developed by a ham named [Martin] (G3OQD). A 320×256 image takes nearly two minutes to send. The balloon system sends every 10 minutes, so that’s not a problem.

Of course, this technique will work anywhere you want to send images over a communication medium. Hams use these SSTV formats even on noisy shortwave frequencies, so the protocols are robust.

Hams used SSTV to trade memes way before the Internet. Need to receive SSTV? No problem.

Dwingeloo To Venus: Report Of A Successful Bounce

Dwingeloo telescope with sun shining through

Radio waves travel fast, and they can bounce, too. If you are able to operate a 25-meter dish, a transmitter, a solid software-defined radio, and an atomic clock, the answer is: yes, they can go all the way to Venus and back. On March 22, 2025, the Dwingeloo telescope in the Netherlands successfully pulled off an Earth-Venus-Earth (EVE) bounce, making them the second group of amateurs ever to do so. The full breakdown of this feat is available in their write-up here.

Bouncing signals off planets isn’t new. NASA has been at it since the 1960s – but amateur radio astronomers have far fewer toys to play with. Before Dwingeloo’s success, AMSAT-DL achieved the only known amateur EVE bounce back in 2009. This time, the Dwingeloo team transmitted a 278-second tone at 1299.5 MHz, with the round trip to Venus taking about 280 seconds. Stockert’s radio telescope in Germany also picked up the returning echo, stronger than Dwingeloo’s own, due to its more sensitive receiving setup.

Post-processing wasn’t easy either. Doppler shift corrections had to be applied, and the received signal was split into 1 Hz frequency bins. The resulting detections clocked in at 5.4 sigma for Dwingeloo alone, 8.5 sigma for Stockert’s recording, and 9.2 sigma when combining both datasets. A clear signal, loud and proud, straight from Venus’ surface.

The experiment was cut short when Dwingeloo’s transmitter started failing after four successful bounces. More complex signal modulations will have to wait for the next Venus conjunction in October 2026. Until then, you can read our previously published article on achievements of the Dwingeloo telescope.

RTL-SDR With Only A Browser

Surely by now you’ve at least heard of RTL-SDR — a software project that let’s cheap TV tuner dongles work as a software-defined radios. A number of projects and tools have spun off the original effort, but in his latest video, [Tech Minds] shows off a particularly unique take. It’s a Web browser-based radio application that uses WebUSB, so it doesn’t require the installation of any application software. You can see the program operating in the video below.

There are a few things you should know. First, you need the correct USB drivers for your RTL-SDR. Second, your browser must support WebUSB, of course. Practically, that means you need a Chromium-type browser. You may have to configure your system to allow raw access to the USB port, too.

Watching the video, you can see that it works quite well. According to the comments, it will work with a phone, too, which is an interesting idea. The actual Web application is available as open source. It isn’t going to compete with a full-fledged SDR program, but it looked surprisingly complete.

These devices have grown from a curiosity to a major part of radio hacking over the years. Firefox users can’t use WebUSB — well, not directly, anyway.

 

Ruimtesonde Voyager 2 schakelt apparaat uit om energie te besparen

NASA is van plan vandaag een van de laatste instrumenten aan boord van ruimtesonde Voyager 2 uit te schakelen. De zet volgt een maand na een soortgelijke energiebesparende maatregel bij Voyager 1. Volgens NASA wordt hiermee de levensduur van andere meetapparatuur van de ruimtemissies verlengd.

Het gaat om de laag-energetische-deeltjesmeter, een instrument aan de arm van Voyager 2 die kosmische straling meet. Het draait elke 192 seconden in een andere richting om in 360 graden rond de sonde te kunnen meten. NASA wijst erop dat dit instrument berekend was op 500.000 rotaties, maar er uiteindelijk 8,5 miljoen zijn gemaakt.

Bij Voyager 1 werd op 25 februari al een ander instrument om kosmische straling te meten uitgezet, waarmee energie en stroming van protonen werd vastgelegd. Daarmee zijn op allebei de sondes nog drie van de tien instrumenten in werking.

De Voyagers werden in 1977 binnen anderhalve maand gelanceerd. De primaire missie was een bezoek aan de planeten die het verst van ons af staan, Jupiter, Saturnus, Uranus en Neptunus. Daarna werden de sondes op een pad diep het heelal in gestuurd om metingen te verrichten in de buitenste regionen van ons zonnestelsel.

Een terugblik op de reizen van de Voyagers:

Terugblik: de missie van de Voyager-ruimtesondes

Ze krijgen daarbij stroom van een kernaccu, die plutonium gebruikt om energie op te wekken. Dat leverde in het begin de 160 watt die nodig was om alles draaiende te houden, maar inmiddels verliezen de Voyagers door het uitdoven van de energiebron zo’n 4 watt aan kracht per jaar. En dat terwijl er voor de radioantenne van de sondes bijvoorbeeld al 22 watt nodig is, ongeveer de hoeveelheid stroom die er voor een koelkastgloeilamp nodig is.

Hoewel de officiële missie allang voorbij is, doet NASA er toch alles aan om de Voyagers draaiende te houden. Doordat geen enkel door mensen gemaakt voorwerp ooit zo ver in de ruimte kwam, is alle informatie die wordt doorgezonden waardevol. “Elke dag kan onze laatste zijn, maar elke dag kan ook weer een revolutionaire ontdekking brengen”, verwoordt projectleider Linda Spilker het.

Beide Voyagers hebben inmiddels ons zonnestelstel verlaten, nummer 1 in 2012 en nummer 2 acht jaar later. De eerste heeft inmiddels een afstand bereikt van 25 miljard kilometer van de aarde, de andere heeft 21 miljard kilometer afgelegd. Signalen van de sondes doen er daarom bijna een dag over om aarde te bereiken.

Verder afschalen

NASA zette vorig jaar oktober ook al een apparaat uit aan boord van Voyager 2, een instrument dat werd gebruikt om plasma in de ruimte te meten.

Door opnieuw een meting op te offeren is de verwachting dat beide Voyagers nog in ieder geval tot het volgende decennium ten minste een apparaat aan kunnen houden. Wel is het daarvoor volgend jaar bij beide sondes opnieuw nodig een ander apparaat uit te zetten.

Ook als de Voyagers definitief zullen zwijgen zullen ze nog niet totaal nutteloos zijn: aan boord is ook een gouden plaat met geluiden van aarde, bedoeld als visitekaartje voor buitenaards leven.

A Hacker’s Approach To All Things Antenna

When your homebrew Yagi antenna only sort-of works, or when your WiFi cantenna seems moody on rainy days, we can assure you: it is not only you. You can stop doubting yourself once and for all after you’ve watched the Tech 101: Antennas webinar by [Dr. Jonathan Chisum].

[Jonathan] breaks it all down in a way that makes you want to rip out your old antenna and start fresh. It goes further than textbook theory; it’s the kind of knowledge defense techs use for real electronic warfare. And since it’s out there in bite-sized chunks, we hackers can easily put it to good use.

The key takeaway is that antenna size matters. Basically, it’s all about wavelength, and [Jonathan] hammers home how tuning antenna dimensions to your target frequency makes or breaks your signal. Whether you’re into omnis (for example, for 360-degree drone control) or laser-focused directional antennas for secret backyard links, this is juicy stuff.

If you’re serious about getting into RF hacking, watch this webinar. Then dig up that Yagi build, and be sure to send us your best antenna hacks.

 

What’s Wrong With This Antenna Tuner?

[Tech Minds] built one of those cheap automatic antenna tuners you see everywhere — this one scaled up to 350 watt capability. The kit is mostly built, but you do have to add the connectors and a few other stray bits. You can see how he did it in the video below.

What was very interesting, however, was that it wasn’t able to do a very good job tuning a wire antenna across the ham bands, and he asks for your help on what he should try to make things better.

 

It did seem to work in some cases, and changing the length of the wire changed the results, so we would guess some of it might be a resonance on the antenna wire. However, you would guess it could do a little better. It is well known that if a wire is one of a number of certain lengths, it will have extremely high impedence in multiple ham bands and be challenging to tune. So random wires need to not be exactly random. You have to avoid those lengths.

In addition, we were surprised there wasn’t more RF protection on the power lines. We would probably have suggested winding some coax to act as a shield choke, RF beads, and even extra bypass capacitors.

Another possible problem is that the diodes in these units are often not the best. [PU1OWL] talks about that in another video and bypasses some of the power lines against RF, too.

If you have any advice, we are sure he’d love to hear it. As [PU1OWL] points out, a tuner like this can’t be any better than its SWR measurement mechanism. Of course, all of these tuners take a few watts to light them up. You can, however, tune with virtually no power with a VNA.