Why Does The FCC Care About Computers?

Unless you are over a certain age, you probably take it for granted that electronic gadgets you buy have some FCC marking on them. But it wasn’t always true. [Ernie] submits that the FCC’s regulation of the computer industry was indirectly the result of the success of CB radio in that same time period.

Today, there is a high chance you don’t watch TV directly over the airwaves or even consume audio from a traditional radio station. Even if you do, the signal is increasingly likely to be digital. But only analog radio and TV were highly susceptible to interference. When a professional radio station or the power company interfered with you watching I Love Lucy, you could count on them to resolve it. Even ham radio operators, a small segment of the population, would, in general, graciously help you if their transmissions interfered with your equipment.

Never mind that, in many cases, it was the cheap TV or some other problem on the receiving end. Then there was another source of potential interference: CB radio. At first, you were about as likely to encounter a CB operator as a ham radio operator. But then in the 1970s, CB exploded, becoming a cultural phenomenon, and you can hear what a state it was in by watching the contemporary TV report in the video below.

 

This explosion of operators who did nothing more than apply for a license (if they even bothered to do so) and bought their equipment at a local store had no idea how to help curb interference, even if they wanted to. In 1977, the AP reported that 83% of the FCC’s TV interference complaints involved CB radio.

Early computers were also very noisy on the radio bands. So much so that early attempts at computer audio output were simply modulating the radio frequency interference. Again, at first, this wasn’t a huge problem. But as computers became more common, so did computer-related interference, and the FCC didn’t want to deal with another CB radio-style explosion.

The rest is, as they say, history, and [Ernie] covers it all in the post. Getting a product approved by the FCC isn’t trivial, but if you have to do it, we have some advice.

The Singing Dentures Of Manchester And Other Places

Any radio amateur will tell you about the spectre of TVI, of their transmissions being inadvertently demodulated by the smallest of non-linearity in the neighbouring antenna systems, and spewing forth from the speakers of all and sundry. It’s very much a thing that the most unlikely of circuits can function as radio receivers, but… teeth? [Ringway Manchester] investigates tales of musical dental work.

Going through a series of news reports over the decades, including one of Lucille Ball uncovering a hidden Japanese spy transmitter, it’s something all experts who have looked at the issue have concluded there is little evidence for. It was also investigated by Mythbusters. But it’s an alluring tale, so is it entirely fabricated? What we can say is that teeth are sensitive to sound, not in themselves, but because the jaw provides a good path bringing vibrations to the region of the ear. And it’s certainly possible that the active chemical environment surrounding a metal filling in a patient’s mouth could give rise to electrical non-linearities. But could a human body in an ordinary RF environment act as a good enough antenna to provide enough energy for something to happen? We have our doubts.

It’s a perennial story (even in fiction), though, and we’re guessing that proof will come over the coming decades. If the tales of dental music and DJs continue after AM (or Long Wave in Europe) transmissions have been turned off, then it’s likely they’re more in the mind than in the mouth. If not, then we might have missed a radio phenomenon. The video is below the break.

 

 

Inside A Germanium Transistor

The first transistors were point contact devices, not far from the cats-whiskers of early radio receivers. They were fragile and expensive, and their performance was not very high. The transistor which brought the devices to a mass audience through the 1950s and 1960s was the one which followed, the alloy diffusion type. [Play With Junk] has a failed OC71 PNP alloy diffusion transistor, first introduced in 1957, and has cracked it open for a closer look.

Inside the glass tube is a small wafer of germanium crystal, surrounded by silicone grease. It forms the N-type base of the device, with the collector and emitter being small indium beads fused into the germanium. The junctions were formed by the resulting region of germanium/indium alloy. The outside of the tube is pained black because the device is light-sensitive, indeed a version of this transistor without the paint was sold as the OCP71 phototransistor.

These devices were leaky and noisy, with a low maximum frequency and low gain. But they were reliable and eventually affordable, so some of us even cut our electronic teeth on them.

 

Lumafield Shows Why Your Cheap 18650 Cells Are Terrible

Lithium-ion cells deliver very high energy densities compared to many other battery technologies, but they bring with them a danger of fire or explosion if they are misused. We’re mostly aware of the battery conditioning requirements to ensure cells stay in a safe condition, but how much do we know about the construction of the cells as a factor? [Lumafield] is an industrial imaging company, and to demonstrate their expertise, they’ve subjected a large number of 18650 cells from different brands to a CT scan.

The construction of an 18650 sees the various layers of the cell rolled up in a spiral inside the metal tube that makes up the cell body. The construction of this “jellyroll” is key to the quality of the cell. [Lumafield’s] conclusions go into detail over the various inconsistencies in this spiral, which can result in cell failure. It’s important that the edges of the spiral be straight and that there is no electrode overhang. Perhaps unsurprisingly, they find that cheap no-name cells are poorly constructed and more likely to fail, but it’s also interesting to note that these low-quality cells also have fewer layers in their spiral.

We hope that none of you see more of the inside of a cell in real life than you have to, as they’re best left alone, but this report certainly sheds some light as to what’s going on inside a cell. Of course, even the best cells can still be dangerous without protection.