A dipole antenna is easy, right? Two wires, each a quarter wavelength long, emanate from a coax or other feedline. Unless it is an off-center dipole. The length is still the same, but you move the feed point to a different part. [KB9VBR] explains how this changes the antenna’s impedance from the nominal 70 ohms of a standard dipole.
Why would you want to do that? The trick is to find a feed point that has acceptable impedance on multiple ham radio bands. Most automatic tuners can handle a certain range of mismatch so using an antenna like this with a tuner can allow one antenna to serve multiple bands with no traps or switches.
[KB9VBR] uses a 4:1 balun to convert the relatively high impedance to something close enough for a tuner to work with. A cordless soldering iron comes in handy for antenna work and in the video you can see a gas-powered iron making short work of the connections to the 14 gauge wire.
The impedance also depends on height and he suggests 30 feet, at least. Does it work? If you watch the end of the video, it apparently does. If you are in the mood for technical talk about ham antennas, you could do worse than watch this MIT video. If you want a novel take on why antennas work, you might want to read about the kink.
We often think of ham radio operators talking to exotic faraway lands, and that’s true for hams using the HF bands (below 30 MHz), especially if they have nice antennas. Modern living has made it much harder to have those big antenna farms, and today’s ham is more likely talking on VHF or UHF frequencies with very limited range under normal circumstances. Sure, you can use a repeater or bounce your signal from a satellite or the moon, but normal direct communication is normally going to be less than a typical commercial FM radio station. But on April 7th, two hams communicated across the Atlantic on 432 MHz — a UHF frequency. The distance was almost 4,000 km.
Notice we didn’t say they talked, but they communicated. The contact was via a somewhat controversial mode called FT8 which uses weak signal techniques to allow two computers to send limited amounts of information to each other. However, on April 10, the two stations reported a single sideband voice contact after they noticed the band conditions improving on the FT8 signal.
The two stations had good equipment, but nothing out of the ordinary. FG8OJ in Guadeloupe used a 100W transmitter and an 18 element yagi which is not terribly large at that frequency. D4VHF was on the Cape Verde Islands at the time of the contact. FG4ST also made a connection with D4VHF using only a vertical antenna.
Propagation was, obviously, very good to allow this to happen (the image above is from F5LEN’s prediction for that day). The theory is that the signals rode close to the ocean waves in a mode known as ducting. There were other reception reports, so the incident wasn’t isolated.
Normally this kind of thing requires active or passive bouncing of a signal. Repeaters have a limited range. The moon and satellites can take you further but require some work. Hams have even used reflections from airplanes as an in-between solution.
The Silicon Labs Si4735 is a single-chip solution for receiving AM, FM, and shortwave radio. With a bit of hacking, it even supports single sideband (SSB). All you’ve got to do is provide it with a suitable control interface, which [Ricardo Lima Caratti] has done with his recent project.
Using an Arduino Pro Mini, a handful of buttons, and a standard TFT display, [Ricardo] has put together a serviceable little receiver with a fairly impressive user interface. We especially like the horizontal bars indicating the signal to noise ratio and received signal strength. The next evolution would be to put this whole rig into some kind of enclosure, but for now he seems content to control the action with a handful of unlabeled buttons on a piece of perfboard.
Of course, the presentation of this receiver isn’t really the point; it’s more of a proof of concept. You see, [Ricardo] is the person who’s actually developed the library that allows you to control the Si4735 from your microcontroller of choice over I2C. He’s currently tested it with several members of the official (and not so official) Arduino family, as well as the ESP32.
The documentation [Ricardo] has put together for his MIT licensed Arduino Si4735 library is nothing short of phenomenal. Seriously, if all open source projects were documented even half as well as this one is, we’d all be a few notches closer to world peace. Even if you aren’t terribly interested in adding shortwave radio reception to your next project, you’ve got to browse his documentation just to see where the high water mark is.
Dealing with an antenna is one of those topics we never feel like we know enough about. MIT had a live stream of [Dr. Kiersten Kerby-Patel] discussing antennas in a talk, sponsored by the ham radio club on campus. You can see the recording below.
The main assertion of the presentation is that everything is a dipole unless it is a loop. Although the professor probably deals with antennas at an extremely high theoretical level, she did a great job of keeping it aimed at ham radio operators.
The talk is about an hour long, so it isn’t optimized for the YouTube generation. There’s some introductory material that looks as though it would have been in one of our old physics classes. However, the talk gets more practical towards the end.
There’s the obligatory mention of Yagis and loops. There’s even a Smith chart. If you don’t know what the Chu limit is, you should definitely be watching this video. The end of the talk covers some very small antennas using active devices or even moving parts.
It may not seem like it, but amateur radio is fighting a two-front war for its continued existence. On the spectrum side, hams face the constant threat that the precious scraps of spectrum that are still allocated to their use will be reclaimed and sold off to the highest bidder as new communication technologies are developed. On the demographic side, amateur radio is aging, with fewer and fewer young people interested in doing the work needed to get licensed, with fewer still having the means to get on the air.
Amateur radio has a long, rich history, but gone are the days when hams can claim their hobby is sacrosanct because it provides communications in an emergency. Resting on that particular laurel will not win the hobby new adherents or help it hold onto its spectrum allocations, so Josh Nass (KI6NAZ) is helping change the conversation. Josh is an engineer and radio amateur from Southern California who runs Ham Radio Crash Course, a YouTube channel dedicated to getting people up to speed on ham radio. Josh’s weekly livestreams and his video reviews of ham radio products and projects show a different side of the World’s Greatest Hobby, one that’s more active (through events like “Summits on the Air”) and focused on digital modes that are perhaps more interesting and accessible to new hams.
Join us on the Hack Chat as we discuss how to make ham radio matter in today’s world of pervasive technology. We’ll talk about the challenges facing amateur radio, the fun that’s still to be had on the air even when the bands are dead like they are now (spoiler alert: they’re not really), and what we can all do to keep ham radio relevant.
Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.
Conventional wisdom holds that the best way to learn a new language is immersion: just throw someone into a situation where they have no choice, and they’ll learn by context. Militaries use immersion language instruction, as do diplomats and journalists, and apparently computers can now use it to teach themselves Morse code.
The blog entry by the delightfully callsigned [Mauri Niininen (AG1LE)] reads like a scientific paper, with good reason: [Mauri] really seems to know a thing or two about machine learning. His method uses curated training data to build a model, namely Morse snippets and their translations, as is the usual approach with such systems. But things take an unexpected turn right from the start, as [Mauri] uses a Tensorflow handwriting recognition implementation to train his model.
Using a few lines of Python, he converts short, known snippets of Morse to a grayscale image that looks a little like a barcode, with the light areas being the dits and dahs and the dark bars being silence. The first training run only resulted in about 36% accuracy, but a subsequent run with shorter snippets ended up being 99.5% accurate. The model was also able to pull Morse out of a signal with -6 dB signal-to-noise ratio, even though it had been trained with a much cleaner signal.
Other Morse decoders use lookup tables to convert sound to text, but it’s important to note that this one doesn’t. By comparing patterns to labels in the training data, it inferred what the characters mean, and essentially taught itself Morse code in about an hour. We find that fascinating, and wonder what other applications this would be good for.
Het zou zomaar kunnen nu er recent – na een lange periode van afwezigheid – weer zonnevlekken op onze moederster zijn gespot.
De dag voor kerst zagen astronomen twee groepen zonnevlekken op onze moederster. Nu hoor ik je denken: zo bijzonder is dat toch niet? Nou, de astronomen keken er toch even van op. Want de zon was al sinds 14 november 2019 vrij van zonnevlekken. De laatste keer dat de zon zo’n lange periode zonnevlekvrij was, was in 1996.
Cyclus
Die inactiviteit is te herleiden naar de cyclus van de zon. Onze moederster doorloopt namelijk een grofweg 11 jaar durende cyclus die gekenmerkt wordt door een zonneminimum – een periode waarin de zon heel rustig is en weinig zonnevlekken en zonnevlammen genereert – en een zonnemaximum, waarin de ster juist veel actiever is. Het zonnemaximum vond in 2014 plaats. Sindsdien neemt de activiteit op de zon af en is het wachten op het zonneminimum dat tevens het einde van deze zonnecyclus en het begin van een nieuwe markeert. Onderzoekers voorspelden eerder dat het zonneminimum zich rond april 2020 aan zou dienen. Maar dat kon ook zes maanden later of zes maanden eerder worden; de ervaring leert dat de zon het niet zo nauw neemt met de tijd.
Nu er na een lange periode van rust weer zonnevlekken op de zon opduiken, is de grote vraag of dit dan het zonneminimum was en daarmee dus een nieuwe zonnecyclus is aangebroken. Wetenschappers hebben meer data nodig om met zekerheid te kunnen zeggen dat deze zonnevlekken daadwerkelijk een nieuwe zonnecyclus inluiden, maar dat een nieuwe cyclus aanstaande is, staat vast en wordt door de komst van de zonnevlekken duidelijk onderschreven.
Wat brengt het ons?
Wat die nieuwe zonnecyclus ons brengt, is altijd enigszins koffiedik kijken. De ene cyclus is namelijk de andere niet. Soms verloopt zo’n cyclus – zoals het exemplaar waar we nu nog net (of net niet meer) inzitten – vrij gemoedelijk en is de zon zelfs tijdens het zonnemaximum nog relatief rustig. Maar er zijn ook cycli geweest waarin het zonnemaximum gekenmerkt werd door een hoop onrust op de zon. Die onrust komt tot uiting in veel zonnevlekken, zonnevlammen, en meerdere zogenoemde coronale massa-ejecties per dag. Met name die coronale massa-ejecties kunnen nog weleens venijnig zijn; tijdens deze uitbarstingen op de zon worden energierijke deeltjes en magnetische velden de ruimte ingeslingerd. Deze kunnen behalve een fraai poollicht genereren, ook schade aanrichten aan satellieten in een baan rond de aarde en – in uitzonderlijke gevallen – zelfs voor problemen zorgen op aarde (zie kader).
Onze aarde wordt omringd door een magnetisch veld dat ons onder meer beschermt tegen de grillen van de zon. Maar heel soms schiet dat aardmagnetisch veld tekort. Dat kan gebeuren als er sprake is van een samenloop van omstandigheden die leidt tot een extreme, op de aarde gerichte, uitbarsting op de zon. Dat gebeurde bijvoorbeeld in 1859. Een coronale massa-ejectie raakte toen de aardse magnetosfeer – de invloedssfeer van het magnetisch veld dat de aarde zelf genereert – waardoor deze verstoord raakte. Het leidde tot het uitvallen van de telegraafverbinding tussen Europa en Amerika. En in 1989 zorgde de zon er zo voor dat een elektriciteitsnetwerk in Canada werd uitgeschakeld en zo’n zes miljoen mensen meer dan negen uur zonder stroom zaten.
Gezien de impact die een actieve zon op de aarde en omgeving kan hebben, is er onderzoekers veel aan gelegen om te kunnen voorspellen wat een zonnecyclus gaat brengen. Maar dat is zo gemakkelijk nog niet. Want nog steeds weten we niet precies hoe onze ster met name diep van binnen werkt. Toch wagen sommige onderzoekers zich wel aan een voorspelling. En die is enigszins geruststellend. Naar verwachting wordt de volgende zonnecyclus net als de cyclus waar we nu in zitten (of net uit zijn gerold) vrij rustig. Sterker nog: NASA voorspelde vorig jaar dat het wel eens de zwakste zonnecyclus in 200 jaar tijd zou kunnen worden, waarbij de intensiteit van het zonnemaximum – gemeten in het aantal zonnevlekken – 30 tot 50% lager ligt dan in de meest recente zonnecyclus. Het zou goed nieuws zijn voor de plannen van NASA, die in 2024 – dus rondom het zonnemaximum – mensen naar de maan wil sturen en daar geen gevaarlijk ruimteweer bij kan gebruiken.
Next time you get a new device and excitedly unwrap its little poly-wrapped power supply, remember this: for every switch-mode power supply you plug in, an amateur radio operator sheds a tear. A noisy, broadband, harmonic-laden tear.
The degree to which this fact disturbs you very much depends upon which side of the mic you’re on, but radio-frequency interference, or RFI, is something we should all at least be aware of. [Josh (KI6NAZ)] is keenly aware of RFI in his ham shack, but rather than curse the ever-rising noise floor he’s come up with some helpful tips for hunting down and eliminating it – or at least reducing its impact.
Attacking the problem begins with locating the sources of RFI, for which [Josh] used the classic “one-circuit-at-a-time” approach – kill every breaker in the panel and monitor the noise floor while flipping each breaker back on. This should at least give you a rough idea of where the offending devices are in your house. From there, [Josh] used a small shortwave receiver to locate problem areas, like the refrigerator, the clothes dryer, and his shack PC. The family flat-screen TV proved to be quite noisy too. Remediation techniques include wrapping every power cord and cable around toroids or clamping ferrite cores around them, both on the offending devices and in the shack. He even went so far as to add a line filter to the dryer to clamp down on its unwanted interference.
Judging by his waterfall displays, [Josh]’s efforts paid off, bringing his noise floor down from S5 to S1 or so. It’s too bad he had to take matters into his own hands – it’s not like the FCC and other spectrum watchdogs don’t know there’s a problem, after all.
The radio spectrum is carefully regulated and divided up by Governments worldwide. Some of it is shared across jurisdictions under the terms of international treaties, while other allocations exist only in individual countries. Often these can contain some surprising oddities, and one of these is our subject today. Did you know that the UK’s first legal CB radio channels included a set in the UHF range, at 934 MHz? Don’t worry, neither did most Brits. Behind it lies a tale of bureaucracy, and of a bungled attempt to create an industry around a barely usable product.
Hey, 2019, Got Your Ears On?
Mention CB radio in 2019 it’s likely that the image conjured in the mind of the listener will be one from a previous decade. Burt Reynolds and Jerry Reed in Smokey and the Bandit perhaps, or C. W. McCall’s Convoy. It may not be very cool in the age of WhatsApp, but in the 1970s a CB rig was the last word in fashionable auto accessories and a serious object of desire into which otherwise sane adults yearned to speak the slang of the long-haul trucker.If you weren’t American though, CB could be a risky business. Much of the rest of the world didn’t have a legal CB allocation, and correspondingly didn’t have access to legal CB rigs. The bombardment of CB references in exported American culture created a huge demand for CB though, and for British would-be CBers that was satisfied by illegally imported American equipment. A vibrant community erupted around UK illegal 27 MHz AM CB in the late 1970s, and Government anger was met with campaigning for a legal allocation. Brits eventually got a legal 27 MHz allocation in November 1981, but the years leading up to that produced a few surprises.
Governments tend to be their happiest when in the driver’s seat, and thus they were reluctant to simply licence the same CB allocation as the American one. During the protracted period of campaigning by CBers over the end of the decade it became obvious that there was a very significant demand for an allocation but they could not be seen to let the illegal CBers win. Their first tactic was to propose a 928 MHz UHF allocation with a 500mW power limit which was rejected by the CB lobbyists, so the final allocation became a 27 MHz one with a 4W limit on an odd set of frequencies incompatible with the American ones, and using FM rather than the American AM. Alongside this they clung to a UHF allocation, which was finally given at 934 MHz.
The result was that Brits had two CB allocations, one of which on 27 MHz that worked even if it wasn’t as good as the American sets, and one on 934 MHz that didn’t work very well at all and had eye wateringly expensive equipment. All the wannabe Rubber Ducks gravitated towards 27 MHz, but 934 MHz became an exclusive pursuit for enthusiasts; essentially another amateur band in which propagation and DX chasers plied their craft.
The Government hoped that having two CB allocations unique to the UK would create a home-grown industry supplying British-made CB rigs, a seductive idea for politicians with little knowledge of how the electronic hardware industry works. For example, the same idea has been touted in recent years as a reason behind drone licencing laws. But in reality, the market was soon flooded with UK-spec 27 MHz radios from Far Eastern manufacturers. By contrast 934 MHz rigs were rare, with only one or two models being brought to market. The object of desire was the Cybernet Delta One, a video review of which we’ve placed at the bottom of the page.
Christmas 1981, The Day The Dream Ended
If you were an AM CBer who bought a legal UK 27 MHz FM rig in November 1981, then life continued as usual as the community moved to the new band. They had a triumphant couple of months as victors savouring their spoils, but then Christmas came around, and everyone who’d sat in the cinema watching Convoy and fantasised about CB lingo got a rig of their own. Overnight the dream was shattered, followed swiftly by the UK CB bubble bursting as the novelty wore off. 27 MHz CB continues in the UK with a set of European channels now added to the UK ones, but never again will it be anything approaching cool.
Meanwhile the 934 MHz channels continued to provide an experimentation ground for enthusiasts, and every month in Practical Wireless there was a column devoted to its propagation. In 1988 as the mobile phone industry began to expand, there was a demand for UHF frequencies, and the Government stopped the sale of new 934 MHz equipment. A decade later the allocation was officially removed, and those 934 MHz rigs are now illegal to use, though they do still appear in radio rallies from time to time.
The UK CB boom had a surprising effect, in that it brought a whole new audience into radio as a hobby and caused a corresponding boom throughout the 1980s as many of those people went on to obtain their amateur licences. If you meet someone with a G1 callsign there’s a good chance that’s the generation they came from, so ask them if they had a 934 MHz radio. Even if they didn’t, they’ll probably be able to tell you more about this interesting side chapter in radio history.
Now, sit back and enjoy M0OGY’s review of a 934 MHz radio.
We’ve frequently talked about amateur radio on these pages, both in terms of the breadth of the hobby and the surprisingly low barrier to entry. It’s certainly the case that amateur radio does not have to mean endlessly calling CQ on SSB with an eye-wateringly expensive rig, and [Bill Meara N2CQR] is on hand with a description of a transceiver that’s so simple it only uses one transistor.
It’s a 40 meter (7 MHz) QRP or low power transceiver in which the transmitter is a simple crystal oscillator and the receiver is an equally simple regenerative design. What makes it so simple is the addition of a three-way switch to transfer the single transistor — a J310 FET — between the two halves of the circuit. It’s no slouch as QRP radios go, having clocked up real-world contacts.
This circuit shows us how a little can go a long way in the world of amateur radio, and we can’t help liking it for that. It’s worth saying though that it’s not without flaws, as a key click filter and another transistor would make for a much higher quality transmitted signal. But then it would no longer be a single-transistor rig, and thus would miss the point, wouldn’t it.